Getting Started
Discovering and Maintaining Coupons
 A full list of the currently available coupons can be requested through the /coupons endpoint (GET method). We call this process coupon discovery. The maximum results served in one request to this endpoint is 500. The response for each call indicates the page requested, maximum results per page, and the total available coupons. Using this information, you can make subsequent calls to this endpoint, each time incrementing the requested page (a parameter sent in the request) until you have all the available coupons.
This currently available list of coupons is subject to change at any time for the following reasons:
·          Reason: The entity offering the coupon cancels the coupons.
· Effect: The coupon will no longer be returned in results from discovery.
· Your System’s Response: When a coupon no longer appears during discovery, you should remove this coupon from your system. It is no longer clippable or redeemable.
·          Reason: The coupon reaches it maximum allowed clips.
· Effect: The coupon will continue to be shown during discovery. At some point, the coupon’s total clips (totalClips) might equal or exceed its maximum clips (maxClips).
· Your System’s Response: When you discover a coupon where the totalClips >= maxClips, you should no longer allow this coupon to be clipped. This coupon remains redeemable for any clips that already exist.
·          Reason: The entity offering the coupon makes changes to (edits) the coupon.
· Effect: The coupon data will change in results from /coupons. An edited coupon will always retain its ID field.
· Your System’s Response: When you detect any differences between a coupon found during discovery and your own records of the same coupon (as matched by the id field), you should propagate the necessary changes throughout your system. An edited coupon should be updated to the new specifications as soon as possible. 
·          Reason: The coupon expires based on its EndDate field.
· Effect: The coupon will no longer be returned in results from /coupons.
· Your System’s Response: When a coupon no longer appears during discovery, you should remove this coupon from your system. It is no longer clippable or redeemable.
In order to maintain an up-to-date list of currently active coupons you will need to both keep your own records of coupons offered through this API and regularly query the API for the currently available coupons in order to keep your records reasonably up-to-date. You will also need to report coupon clips made by your end users (shoppers) regularly.
Requirements:
1.        Keep your own records of the coupons . Coupons discovered through this API should be stored in your own data store solution as they are discovered. This API is not designed to be used as an “on-demand” webservice for end-users (shoppers).
2.        Maintaining your records. To keep your coupon records up-to-date, we recommend calling /coupons every 15-20 minutes and using the results to update coupons which have changed or remove coupons which are no longer returned in the results. While, as a best practice, we recommend a request interval of 15-20 minutes, we allow an interval of up to 45 minutes on average.
3.        Reporting on clips. Your system should report clips regularly, on the same recommended/required interval as requesting the currently available coupons. We recommend an interval of 15-20 minutes, and require the maximum interval to be 45 minutes. See “Reporting Clips (Coupon Claims)” below for more information.
Reporting Clips (Coupon Claims)
The organizations that offer coupons served through this API have a usage limit for each coupons. Once enough end users (shoppers) have clipped/claimed coupons, these coupons are no longer available for further clips/claims. The coupons which have reached their maximum allow clips will no continue to be found during discovery.
For Loyalty Lane to maintain a reasonably up-to-date record of total clips, you will need to report regularly to the /clips (POST method) endpoint. Each call to this endpoint should report on only clips that have happened between the last request to this endpoint and the time of this request. For example, consider this series of events:
1.        A request to /clips (POST) is made at 06:00:00 and reports some clips that happened prior to 06:00:00.
2.        Between 06:00:00 and 06:15:00, 12 clips occurred:
a.        8 clips for a coupon with ID 1111
b.       4 clips for a coupon with ID 2222
3.        The next request to /clips (POST) is made at 06:15:00. This request should only include the 8 clips for 1111 and the 4 clips for 2222, not any that occurred before 06:00:00.
Each call to this endpoint accepts an array of “ClipData”. Each ClipData has the following fields:
· CouponId, Int64, Required – the coupon’s Id as found during coupon discovery.
· ClipCount, Int32, Required – how many clips to report. Note that if you report a ClipCount of zero (0), this is considered an error by this API. Only coupons which have been clipped at least once in the interval since the last report should be included in each report.
· RetailerId String, Required – this field identifies which retailer the clip is performed for. This value will be also be used when reporting redemptions to help the coupon creators keep track of which retailers are using which coupons.
Reporting Redemptions (Coupon Uses)
[bookmark: _GoBack]In addition to reporting clips, you will also need to report coupon redemptions to let the coupon creators know which clipped coupons have been used and how many times. The /redemptions (POST) endpoint accepts one redemption at a time. Redemption reporting is not as time-sensitive as clip data, so your system can report redemptions in real time as they come in or in daily batches. See the document “Redemption Request and Field Definitions” for more details.
Authentication System
The first call you should make when using this API is to the "Authenticate" endpoint (see the Swagger endpoint documentation for more details). This endpoint accepts your username and password as input parameters and provides you with a token int he response that you will use when making calls to all of the other endpoints. This token needs to be included in calls to other endpoints in an Authorization header:
· Header Name: Authorization
· Header Value: {{the token value}}
Authentication/Authorization Best Practices
The authentication/authorization token will remain valid for 24 hours. You can and should reuse this token as opposed to getting a fresh token before each other endpoint request. We recommend only refreshing your token after it has expired by using this process:
1. Use the token until it expires. You will know the token has expired when you receive a 401 (Unauthorized) response from the API.
2. When a 401 is returned, refresh your token by making your next request to the "Authenitcate" endpoint and update the token in your cache/data store.
3. Use the new token to resend the previously-failed (Unauthorized) request.
Alternatively, you can set up a system to get and cache/store a fresh token on a schedule. We recommend a scehdule of twice per day.
General API Use
In the event of an API request failing, we ask that you do not simply resend requests continually until you get a working response. You should implement a retry system for all calls with a back-off timing interval. We recommend limiting retries to three with the following schedule:
· 1st retry: immediately after the initial failed request
· 2nd retry: 10 seconds after the 1st retry
· 3rd retry: 60 seconds after the 2nd retry
For the standard use case for the "Coupons" (discovering coupons) and "Clips" (reporting on clips) endpoints, delays of a minute or two are inconsequential. If your use case is more time-sensitive for some reason, please contact Loyalty Lane so we can discuss your case in more detail.
